Junction Temperature
\[ P_{\text{diss}} = \frac{P_{\text{out}}}{\text{Efficiency}} - P_{\text{out}} \]
\[ P_{\text{diss}} = P_{\text{dc}} - P_{\text{out}} \]
\[ \Delta T = R_{\text{th}} \cdot P_{\text{diss}} \]
\[ P_{\text{mW}} = 10^{\left(\frac{P_{\text{dBm}}}{10}\right)} \]
\[ T_j = T_{\text{case}} + \Delta T \]
Calculation of Rth
\[ P_{\text{diss}} = \frac{P_{\text{out}}}{\text{Efficiency}} - P_{\text{out}} \]
\[ P_{\text{diss}} = P_{\text{dc}} - P_{\text{out}} \]
\[ R_{\text{th}} = \frac{\Delta T}{P_{\text{diss}}} \]
\[ \Delta T = T_j - T_{\text{case}} \]
Min Efficiency at Max Tj
\[ \Delta T = T_{\text{max}} - T_{\text{case}} \]
\[ \text{max } P_{\text{diss}} = \frac{\Delta T}{R_{\text{th}}} \]
\[ P_{\text{dc}} = P_{\text{diss}} + P_{\text{out}} \]
\[ \text{min Efficiency} = \frac{P_{\text{out}}}{P_{\text{dc}}} \]
Thermal Efficiency
\[ \text{PAE} = \frac{P_{\text{out}}}{(P_{\text{in DC}} + P_{\text{in RF}})} \]
\[ \text{Drain Eff} = \frac{P_{\text{out}}}{P_{\text{in DC}}} \]
\[ \text{Efficiency} = \text{PAE} + \text{Drain Eff} \]
Input
K/W
Output
%
Input
Output
%
K/W
Input
K/W
Output
%
Input
Output
%
%
Disclaimer: Ampleon does not make any guarantees or assurances, whether explicit or implied, regarding the completeness, accuracy, or reliability of the tools available on this web page. Ampleon can not be held liable for any losses or damages, including direct or indirect or consequential damages, that may arise from or be related to the use of these tools.