ART2K0FE, 80-100MHz v1.0 — 5-February-2021

Document information								
Status Company Public								
Author(s)	Ampleon							
Abstract	Measurement results of a Class AB design for the 80-100MHz band with the ART2K0FE							

AMPLEON

ART2K0FE 80-100MHz

1. Revision History

Table 1: Report revisions

Revision	Date	Description	Author
1.0	20210205	Initial document	Harrie Rahangmetan

2. Contents

1.	Revision History	2
2.	Contents	
3.	List of figures	
4.	List of tables	
5.	Introduction	
5.1	General description	
5.2	·	
5.3	•	
5.4	Test circuit	
6.	Measurement Results	5
6.1	Summary CW Power Sweeps (Vds=60V, results @ 1600W)	5
6.2		
6.3	Second & third harmonic @ Frequency=80-100MHz CW, Vds=60V	6
6.4	Summary CW Power Sweeps (Vds=65V, results @ 1600W)	
6.5	, , , , , , , , , , , , , , , , , , , ,	
6.6		
6.7		
6.8		
6.9	Ŭ l	
7.	Thermal images CDE capacitor C23 output circuit	
7.1	Vds=60-65V, 80-90-100MHz @ P3dB	
8.	Appendix A	12
8.1	PCB Layout Drawing top and bottom	
8.2		
8.3		
8.4	I control of the cont	
8.5	r	
8.6		
9.	Photo's Demo Board	
10.	g	
10.1		
10.2		
10.3		
10.4	4 Contact information	18
- 4 -		

3. List of figures

F: 4	ON A / Jac COVA	_
	CW (Vds=60V)Gain and Efficiency vs Pout [W]	
Figure 2	CW (Vds=60V)H2 & H3 vs Pout [dBm]	6
	CW (Vds=65V)Gain and Efficiency vs Pout [W]	
Figure 4	CW (Vds=65V)H2 & H3 vs Pout [dBm]	8
Figure 5	P3dB & Efficiency @ Frequency=80-100MHz Vds=58V-65V	9
Figure 6	P3dB & Efficiency @ Frequency=80-100MHz	10
Figure 7	PCB layouttop layer	12

AR211018

AMPLEON AR211018

AR	T2K0FE			80-100MHz
	Figure 9 Figure 10	PCB L3 Dimensions	bottom layerLayout Drawing + Components	13 13
4.	List of ta	bles		
	Table 1: Table 1:		Report revisionsComponent list	2

3 of 18

AR211018 AMPLEON 80-100MHz

5. Introduction

ART2K0FE

5.1 General description

This report presents the measurement results of the Class AB amplifier demo AR211018. The device ART2K0FE used is a 2000 W advanced ruggedness LDMOS power transistor for industrial, scientific and medical applications in the HF to 400 MHz band, 9th generation LDMOS in a SOT539 package. ART2K0FE is a symmetrical push-pull power transistor. The presented demo is tuned for the frequency band 80-100MHz.

5.2 Test object details

Transistor type: ART2K0FE (Soldered down)

Production code: m2011-0042 **SOT539** Package:

Board: ART2K0FE_input_output_80-100MHz_rev4.5

Demo number: AR211018

5.3 Used Test signals

CW: CW (Vds=58V - 65V)

5.4 Test circuit

A description of this circuit can be found in Appendix A.

Start with a supply voltage (drain-source) of 60V. The total Idq should be 100mA (2x50mA).

Start with Vgs1=1.5V and increase until Idq1=50mA.

Then Vgs2=1.5V and increase until Idg2=50mA.

Leave the Vgs as it is, and you can vary Vds from 58V till 65V.

6. Measurement Results

6.1 Summary CW Power Sweeps (Vds=60V, results @ 1600W)

Freq [MHz]	MaxGain [dB]	MaxEff [%]	G@MxEff [dB]	P1dB [dBm]*	P1dB [W]*	G@P1dB [dB]*	Eff@P1dB [%]*	P3dB [dBm]*	P3dB [W]*	G@P3dB [dB]*	Eff@P3dB [%]*
80.00	28.1	84.1	25.1	61.5	1420.87	27.1	80.0	62.1	1613.73	25.1	84.0
85.00	28.4	83.2	25.4	61.3	1356.86	27.4	76.5	62.3	1685.06	25.4	83.2
90.00	28.4	81.9	25.4	61.4	1384.03	27.4	74.1	62.4	1757.67	25.4	81.7
95.00	28.3	81.4	25.2	61.5	1410.68	27.3	73.2	62.5	1779.19	25.3	81.3
100.00	28.1	81.5	25.0	61.5	1403.42	27.1	73.3	62.4	1725.07	25.1	81.4

Freq [MHz]	Gain [dB] @ 1600W	Eff [%] @ 1600W	Compr [dB] @ 1600W	IRL [dB] @ 1600W
80.00	25.4	83.8	-2.71	9.6
85.00	26.2	81.7	-2.19	12.8
90.00	26.6	78.8	-1.82	15.8
95.00	26.7	77.5	-1.64	17.1
100.00	100.00 26.3		-1.78	17.1

6.2 Gain & Efficiency @ Frequency=80-100MHz CW, Vds=60V

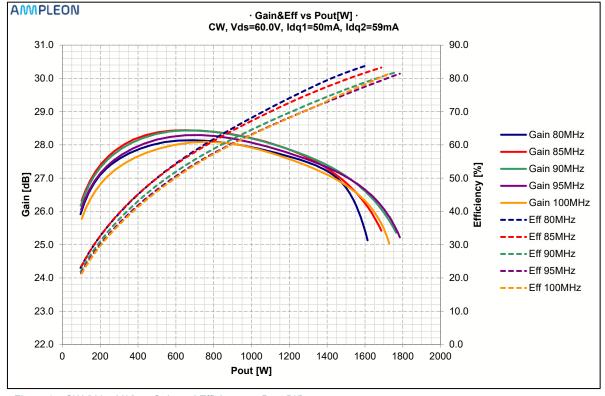


Figure 1 CW (Vds=60V) Gain and Efficiency vs Pout [W]

ART2K0FE 80-100MHz

6.3 Second & third harmonic @ Frequency=80-100MHz CW, Vds=60V

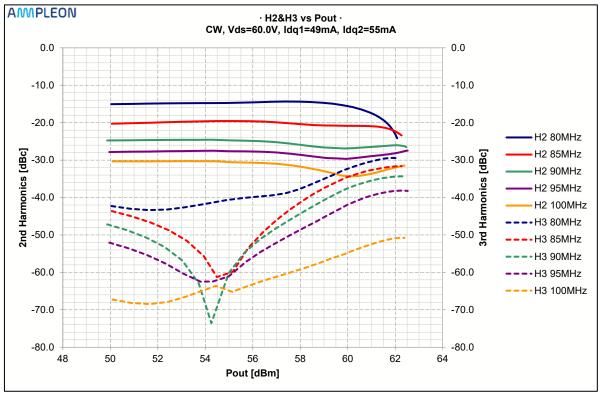


Figure 2 CW (Vds=60V) H2 & H3 vs Pout [dBm]

AMPLEON

6.4 Summary CW Power Sweeps (Vds=65V, results @ 1600W)

Freq [MHz]	MaxGain [dB]	MaxEff [%]	G@MxEff [dB]	P1dB [dBm]*	P1dB [W]*	G@P1dB [dB]*	Eff@P1dB [%]*	P3dB [dBm]*	P3dB [W]*	G@P3dB [dB]*	Eff@P3dB [%]*
80.00	28.3	81.0	25.2	61.9	1558.63	27.3	77.7	62.5	1791.99	25.3	80.9
85.00	28.6	80.3	25.5	61.6	1435.66	27.6	72.2	62.7	1870.54	25.6	80.1
90.00	28.5	80.3	25.5	61.8	1518.59	27.5	71.6	63.0	2001.94	25.5	80.3
95.00	28.4	78.9	25.3	61.9	1533.88	27.4	70.2	63.0	2003.41	25.4	78.9
100.00	28.1	79.6	25.1	61.8	1529.55	27.1	70.0	63.0	1975.87	25.1	79.5

Freq [MHz]	Gain [dB] @ 1600W	Eff [%] @ 1600W	Compr [dB] @ 1600W	IRL [dB] @ 1600W
80.00	27.1	78.4	-1.16	9.1
85.00	27.0	75.1	-1.58	12.3
90.00	27.3	73.2	-1.19	15.2
95.00	27.2	71.5	-1.15	16.9
100.00	100.00 27.0		-1.17	17.9

6.5 Gain & Efficiency @ Frequency=80-100MHz CW Vds=65V

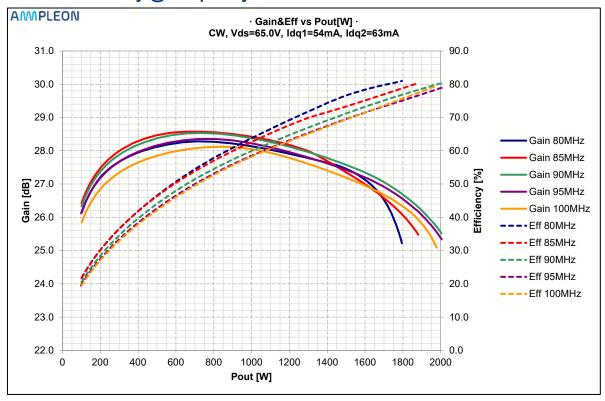


Figure 3 CW (Vds=65V) Gain and Efficiency vs Pout [W]

ART2K0FE 80-100MHz

6.6 Second & third harmonic @ Frequency=80-100MHz CW Vds=65V

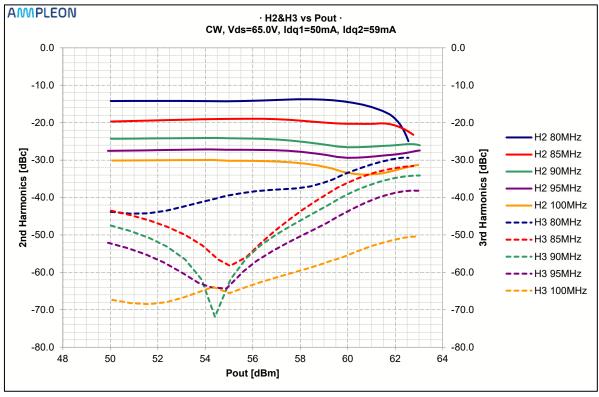


Figure 4 CW (Vds=65V) H2 & H3 vs Pout [dBm]

6.7 Summary CW P3dB and Efficiency at Vds=58V-65V

Vds>	58V		59V		60V		61V		62V		63V		64V		65V	
Freq	P3dB @	Eff @														
(MHz)	(W)	(%)														
80	1497.4	84.66	1544.9	84.55	1613.7	84.05	1647.7	83.62	1680.8	82.69	1714.1	82.61	1754.2	81.97	1792.1	80.93
85	1566	83.32	1619	83.09	1685	83.21	1729.3	83.66	1773.9	83.12	1810.2	82.26	1842	81.23	1870.4	80.14
90	1641	81.93	1696.7	81.64	1757.7	81.74	1802.3	82.14	1854	81.88	1903.4	81.18	1955.4	80.82	2001.9	80.31
95	1661.7	81.64	1717	81.35	1779.1	81.31	1829.2	81.51	1880.7	81.17	1926.4	80.43	1968.4	79.76	2003.5	78.91
100	1613.8	81.59	1665.1	81.31	1725.1	81.38	1788.9	81.25	1839.1	80.86	1883.2	80.32	1931.6	80.01	1975.9	79.51

6.8 P3dB & Efficiency @ Frequency=80-100MHz CW

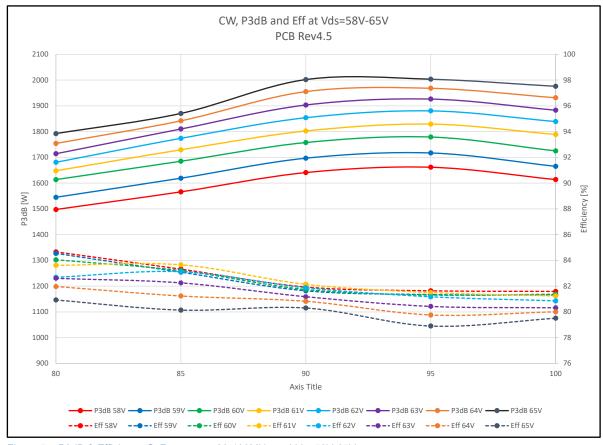


Figure 5 P3dB & Efficiency @ Frequency=80-100MHz Vds=58V-65V

6.9 Tuning C35 and C36 for different performance

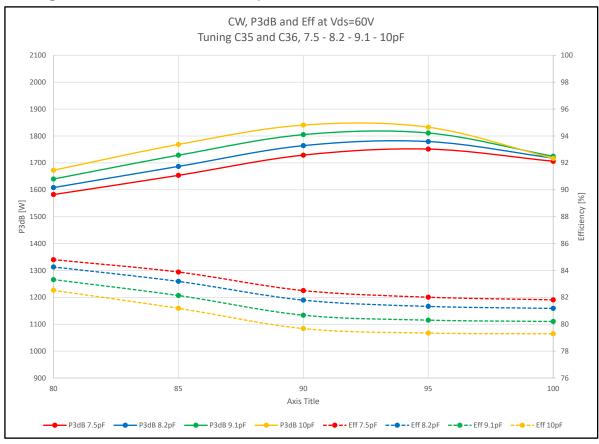
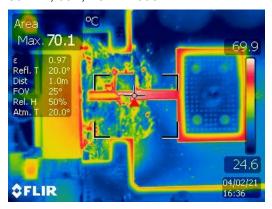
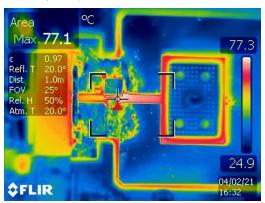
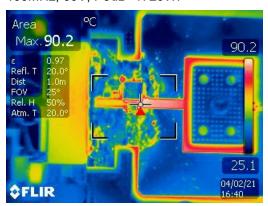
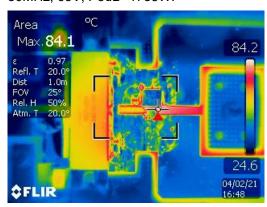



Figure 6 P3dB & Efficiency @ Frequency=80-100MHz C35, C36=7.5-10pF

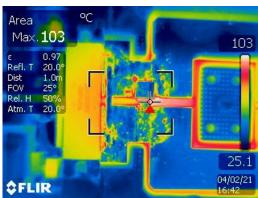

7. Thermal images CDE capacitor C23 output circuit

7.1 Vds=60-65V, 80-90-100MHz @ P3dB

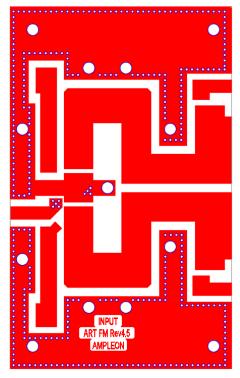

80MHz, 60V, P3dB=1598W:


90MHz, 60V, P3dB=1736W:

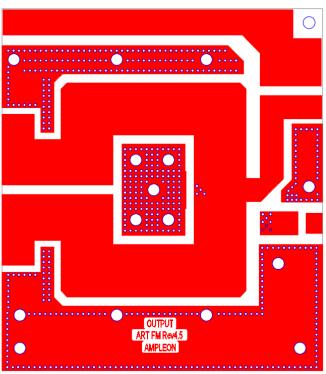
100MHz, 60V, P3dB=1720W:


80MHz, 65V, P3dB=1785W:

90MHz, 65V, P3dB=1990W:


100MHz, 65V, P3dB=1968W:

Note: Pictures show the temperature of the PCB board close to the CDE capacitor (C23). Inside the CDE capacitor (C23) the temperature is about 5-6 degrees Celsius higher.


8. Appendix A

8.1 PCB Layout Drawing top and bottom

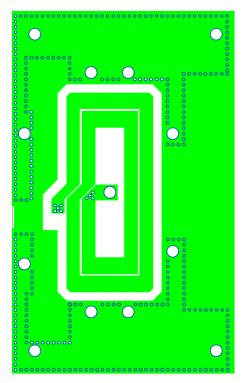
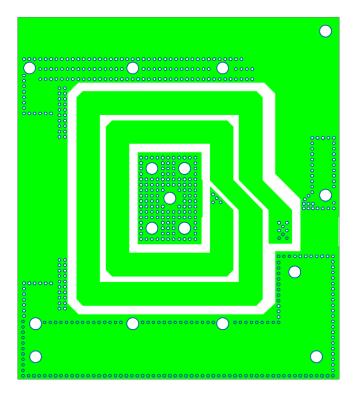



Figure 8 PCB layout

bottom layer

8.2 PCB Layout Drawing + Components

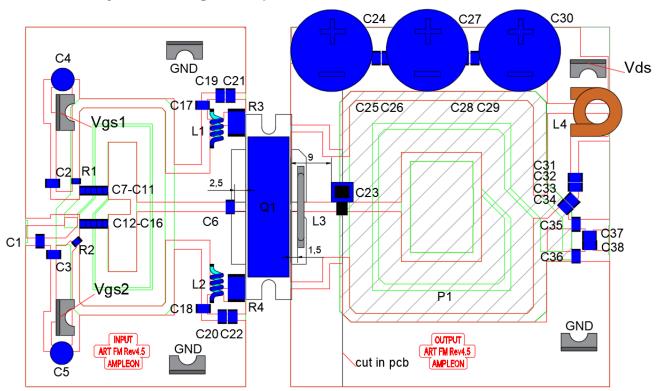


Figure 9 PCB Layout Drawing + Components

Note:

The output pcb is cut in two. The part close to the drain of the transistor and the transistor itself is soldered to the base plate. The other part of the pcb at the output connector side is screwed down. The input pcb is screwed down to the base plate. The cavity in the base plate below the input pcb is not filled. Only air. The cavity in the base plate under the output pcb is filled with Thermipad (blue).

See section 8.6 Building Sequence Demo board.

8.3 L3 dimensions

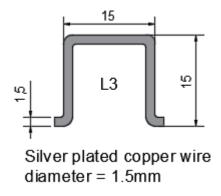


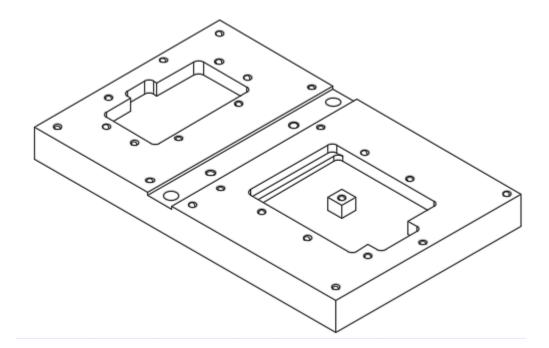
Figure 10 L3 Dimensions

AMPLEON

ART2K0FE 80-100MHz

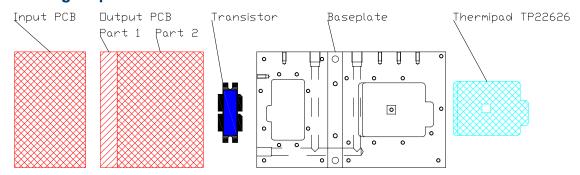
8.4 Component list

Table 1: Component list

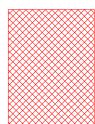

Designator	Description	Manufacturer	Part #						
C1	18pF	ATC	100B						
C2, C3, C17, C18	10nF	AVX	12101C1033KAT2A						
C4, C5	22uF electrolytic capacitor								
C7-C11, C12-C16	4.7nF	Murata	GRM2165C1H472JA01D						
C19, C20	1nF	ATC	100B						
C21, C22	470pF	ATC	100B						
C6	24pF	ATC	100B						
C23	82pF	CDE	MIN-002						
C24, C27, C30	1000uF electrolytic capacitor	PHILIPS							
C25, C26, C28, C29	910pF	ATC	100B						
C31, C32, C33, C34	1nF	PPI	1111N						
C35, C36	8.2pF	ATC	100B						
C37, C38	470pF	ATC	100B						
R1, R2	12 Ohm		1206						
R2, R3	33 Ohm, 2W	TE CONN	CRGP2512F33R						
L1, L2	17.5nH	COILCRAFT	B06TGLC						
L3	Figure 16, silver plated wire		1.5mm diameter						
L4	22nH	COILCRAFT	1212VS-22NM EB						
Q1	ART2K0FE	AMPLEON							
Base plate	Copper with water cooling channel		Cavity for coplanar baluns are 5mm deep						
P1	Thermal conductor under the output balun in the cavity of the base plate	Mueller Ahlhorn	Thermipad TP22626 Er=6.7						
PCB Material: Arlon TC350,	PCB Material: Arlon TC350, thickness 0.762 mm (30 mil), Er = 3.5, Cu = 2x70 micron								

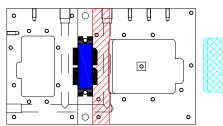
8.5 Baseplate

Please note that this drawing is the standard base plate. This baseplate for the demo AR211018 needed some rework so this drawing is just for illustration.

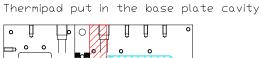

The demo amplifier pcb boards are mounted on a full copper base plate. The base plate contains a water channel to supply the amplifier with enough cooling.

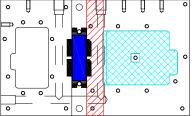
The base plate contains two cavities for the coplanar baluns. The input balun cavity is air filled. The output balun cavity is filled with a thermal conductive material that has good electrical properties. The material is conducting the heat from the balun, generated because of RF losses, to the baseplate. The thermal conductive material is necessary to cool the coplanar output balun.

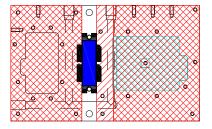

ART2K0FE 80-100MHz


8.6 Building sequence Demo board

Transistor and part 1 output PCB soldered on the base plate







Input PCB and Part 2 of output PCB screwed down to the base plate

AMPLEON AR211018

ART2K0FE 80-100MHz

9. Photo's Demo Board

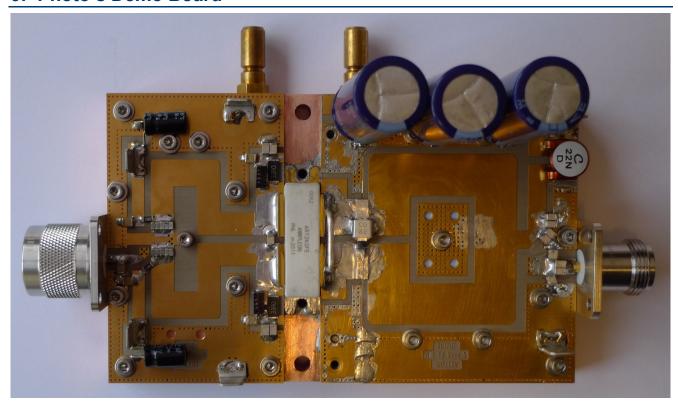


Figure 11 PictureTop View Demo Board

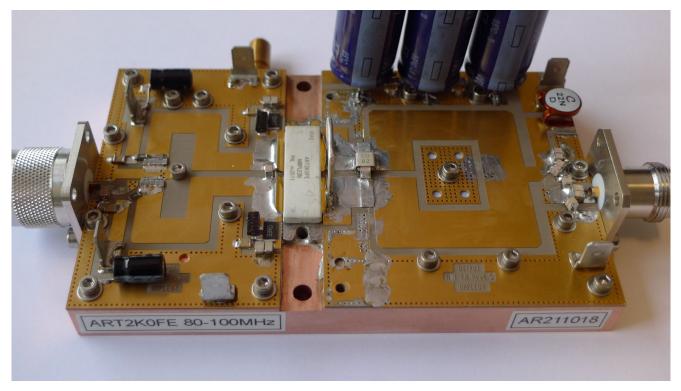


Figure 12 PictureSide View Demo Board

AMPLEON AR211018

ART2K0FE 80-100MHz

10.Legal information

10.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

10.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accepts no liability for inclusion and/or use of Ampleon products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

10.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of the NXP group of companies and any reference to or use of the 'NXP' trademarks will be replaced by reference to or use of Ampleon's own trademarks.

10.4 Contact information

For more information, please visit: http://www.ampleon.com

For sales office addresses, please visit: http://www.ampleon.com/sales