# AR201041

ART1K6PH, 325MHz

**AMPLEON** 

v1.0 – February 28, 2020

**Application Report** 

| Document information    |                                               |  |
|-------------------------|-----------------------------------------------|--|
| Status                  | v1.0                                          |  |
| Author(s) Paul Hunneman |                                               |  |
| Abstract                | Measurement results of the ART1K6PH at 325MHz |  |
| Demo number             | Demo number AR201041                          |  |

ART1K6PH 325MHz

# 1. Revision History

#### Table 1 – Report revisions

| Revision | Date       | Description      | Author        |
|----------|------------|------------------|---------------|
| 1.0      | 2020.02.28 | Initial document | Paul Hunneman |

#### 2. Contents

| 1.  | Revision History    | 4   |
|-----|---------------------|-----|
| 2.  | Contents            | •   |
| 3.  | List of figures     | •   |
| 4.  | List of tables      | •   |
| 5.  | General description |     |
| 6.  | RF characteristics  |     |
| 7.  | Performance Details |     |
| 8.  | User Guide          |     |
| 8.1 | Biasing             | ļ   |
| 8.2 | Bill of Materials   | . 6 |
| 8.3 | Device markings     | . 7 |
| 9.  | Legal information   | . 8 |
| 9.1 | Definitions         | 8   |
| 9.2 | Disclaimers         | 8   |
| 9.3 | Trademarks          |     |
| 9.4 | Contact information |     |
|     |                     |     |

# 3. List of figures

| Figure 1 – Demo view of the ART IN6PH                              | . 3 |
|--------------------------------------------------------------------|-----|
| Figure 2 – ART1K6PH demo board performance at 325MHz and Vds = 53V | .4  |
| Figure 3 – ART1K6PH demo board pin configuration                   | .5  |
| Figure 4 – ART1K6PH demo board component description               | .6  |

#### 4. List of tables

| Table 1 – Report revisions   | 2 |
|------------------------------|---|
| Table 2 – RF characteristics |   |
| Table 3 – Pin description    | 5 |
| Table 4 – Bill of Materials  | 6 |
| Table 5 – Device specifics   | 7 |

ART1K6PH 325MHz

## 5. General description

This report presents the measurement results of a demo using the ART1K6PH transistor at 325MHz. The demo is matched to 50  $\Omega$  at in- and output.

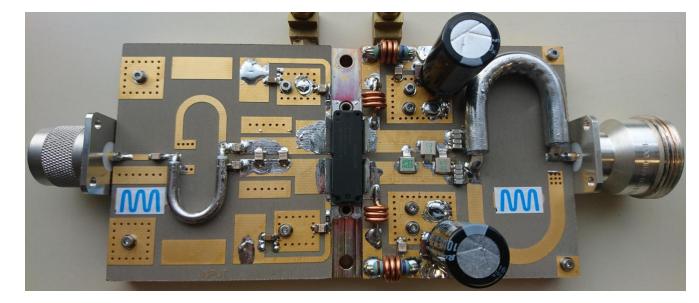



Figure 1 – Demo view of the ART1K6PH

### 6. RF characteristics

Table 2 – RF characteristics

RF performance at V<sub>DS</sub>=53V; Total I<sub>Dq</sub>=100mA<sup>[1]</sup>; T<sub>amb</sub>=25°C

| Parameter            | Conditions                                                                                | Тур                                                                                                                                                                                                                              | Unit                                                                                                                                                                                                                                                                                                              |
|----------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency            |                                                                                           | 325                                                                                                                                                                                                                              | MHz                                                                                                                                                                                                                                                                                                               |
| Drain-source voltage |                                                                                           | 53                                                                                                                                                                                                                               | V                                                                                                                                                                                                                                                                                                                 |
| Gate-source voltage  | Total $I_{Dq} = 100 \text{mA}^{[1]}$                                                      | 1.9                                                                                                                                                                                                                              | V                                                                                                                                                                                                                                                                                                                 |
| Power gain           | P <sub>L</sub> = 1520W pulsed <sup>[2]</sup>                                              | 20.2                                                                                                                                                                                                                             | dB                                                                                                                                                                                                                                                                                                                |
| Drain efficiency     | P <sub>L</sub> = 1520W pulsed <sup>[2]</sup>                                              | 73.6                                                                                                                                                                                                                             | %                                                                                                                                                                                                                                                                                                                 |
| Power gain           | P <sub>L</sub> = 1390W CW                                                                 | 19.5                                                                                                                                                                                                                             | dB                                                                                                                                                                                                                                                                                                                |
| Drain efficiency     | P <sub>L</sub> = 1390W CW                                                                 | 68.4                                                                                                                                                                                                                             | %                                                                                                                                                                                                                                                                                                                 |
|                      | Frequency Drain-source voltage Gate-source voltage Power gain Drain efficiency Power gain | Frequency  Drain-source voltage  Gate-source voltage  Total $I_{Dq} = 100 \text{mA}^{[1]}$ Power gain $P_L = 1520 \text{W pulsed}^{[2]}$ Drain efficiency $P_L = 1520 \text{W pulsed}^{[2]}$ Power gain $P_L = 1390 \text{W CW}$ | Frequency       325         Drain-source voltage       53         Gate-source voltage       Total $I_{Dq} = 100 \text{mA}^{[1]}$ 1.9         Power gain $P_L = 1520 \text{W pulsed}^{[2]}$ 20.2         Drain efficiency $P_L = 1520 \text{W pulsed}^{[2]}$ 73.6         Power gain $P_L = 1390 \text{W CW}$ 19.5 |

<sup>[1]</sup> Total  $I_{Dq}$  of both transistor sections combined

[2]  $t_p = 100 \mu s$ ;  $\delta = 10\%$ 

ART1K6PH 325MHz

### 7. Performance Details

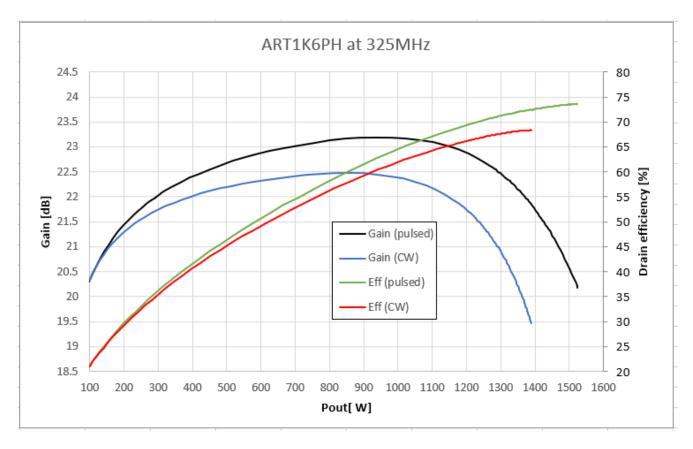



Figure 2 – ART1K6PH demo board performance at 325MHz and Vds = 53V

ART1K6PH 325MHz

## 8. User Guide

### 8.1 Biasing



Figure 3 – ART1K6PH demo board pin configuration

Table 3 – Pin description

| Symbol          | Pin | Description          |
|-----------------|-----|----------------------|
| RFIN            | 1   | RF input             |
| RFout           | 2   | RF output            |
| V <sub>GS</sub> | 3   | Gate-source voltage  |
| V <sub>DS</sub> | 4   | Drain-source voltage |

5 of 8

AMPLEON AR201041
ART1K6PH 325MHz

#### 8.2 Bill of Materials

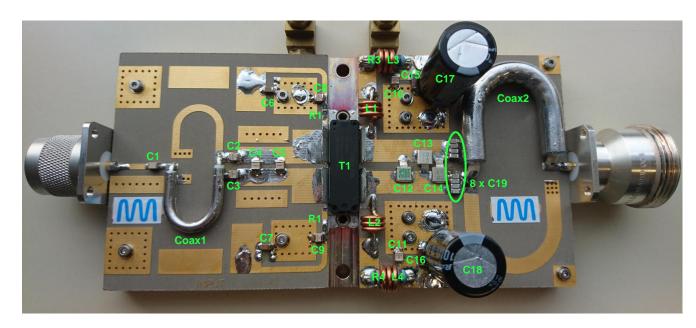



Figure 4 – ART1K6PH demo board component description

Table 4 - Bill of Materials

| Part                 | Description            | Part number          | Value      |
|----------------------|------------------------|----------------------|------------|
| C1, C8, C9, C10, C11 | Chip capacitor         | ATC100B101JT500XT    | 100pF      |
| C2, C3               | Chip capacitor         | ATC100B560JT500XT    | 56pF       |
| C4                   | Chip capacitor         | ATC100B390JT500XT    | 39pF       |
| C5                   | Chip capacitor         | ATC100B470JT500XT    | 47pF       |
| C6, C7               | Chip capacitor         | GRM31CC72A475KE11L   | 4.7uF      |
| C12                  | Mica capacitor         | MIN02-002CC220J-F    | 22pF       |
| C13                  | Mica capacitor         | MIN02-002CC150J-F    | 15pF       |
| C14                  | Mica capacitor         | MIN02-002CC330J-F    | 33pF       |
| C15, C16             | Chip capacitor         | C5750X7S2A106K230KB  | 10uF/100V  |
| C17, C18             | Electrolytic capacitor | 100ZLH470MEFC16X31.5 | 470uF/100V |
| 8 x C19              | Chip capacitor         | ATC800B470JT500XT    | 47pF       |
| R1, R2               | Chip resistor          | 1206                 | 51Ohm      |
| R3, R4               | Resistor               |                      | 120hm/3W   |

ART1K6PH 325MHz

| L1, L2, L3, L4 | Hand-wound coil  | 3-turn 5mm diameter 15AWG |                    |
|----------------|------------------|---------------------------|--------------------|
| T1             | LDMOS transistor | ART1K6PH                  |                    |
| Coax1          | Coaxial line     | UT-090C-25                | 45mm               |
| Coax2          | Coaxial line     | UT-300C-25                | 72mm               |
| Input board    | Taconic RF35     |                           | 30mil<br>thickness |
| Output board   | Taconic RF35     |                           | 30mil<br>thickness |

## 8.3 Device markings

Table 5 – Device specifics

| Parameter    | Value            |  |
|--------------|------------------|--|
| Manufacturer | Ampleon          |  |
| Device       | ART1K6PH         |  |
| Comments     | WK1948-10244 #10 |  |

ART1K6PH 325MHz

#### 9. Legal information

#### 9.1 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

#### 9.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accepts no liability for inclusion and/or use of Ampleon products in

such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

#### 9.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of the NXP group of companies and any reference to or use of the 'NXP' trademarks will be replaced by reference to or use of Ampleon's own trademarks

#### 9.4 Contact information

For more information, please visit: http://www.ampleon.com

For sales office addresses, please visit: http://www.ampleon.com/sales