AR192143

AMPLEON BLP15H9S100, 360-450 MHz V1.0 — 24 September 2019

Application Report

Document information

Info	Content
Status	Company Public
Author(s)	Bill Goumas
Abstract	Measurement results of the BLP15H9S100 Gen 9 LDMOS Device in Board #AR1924 tuned for the 360-450 MHz band at 50V

1 Revision History

Table 1. Report revisions

Revision No.	Date	Description	Author
1.0	20190923	Initial document	Bill Goumas

2 Contents

1	Revision History	.2
2	Contents	
3	List of Figures	.3
4	List of Tables	.3
5	General Description	.3
6	Biasing	.4
6.1	Bias Details	.4
7	Test Bench Set Up	.4
8	Summary	.5
9	Performance Details	.6
9.1	Small Signal Results	.6
9.2	Pulse Gain and Efficiency Sweeps	.7
9.3	CW Gain and Efficiency Sweeps	
9.4	P1dB	_
9.5	Gain, Efficiency vs Frequency at Fixed Power Output	
9.6	Gain, Efficiency vs Frequency at Fixed Power Output	
10	IR Scans	12
10.1	IR Scan Results	12
11	Hardware	13
11.1	Board photograph	13
11.2	PCB layout	14
11.3	Bill of materials	15
11.4	PCB materials	16
11.5	Device markings	16
12	Legal Information	17
12.1	Contact information	17

3 List of Figures

Figure 1.Test Bench Equipment set up	4
Figure 2. Small SIgnal Data, Vdd=50V, Idq=500mA, Pin=10dBm	
Figure 3. Gain(dB) vs Power Out(dBm)	7
Figure 4. Gain(dB), Efficiency(%) vs Power Out(dBm)	
Figure 5. P1(dBm) vs Frequency(MHz)	9
Figure 6. Gain(dB), Eff(%) vs Frequency(MHz) at Pout=100W, 10% Duty Cycle	
Figure 7. Gain(dB), Eff(%) vs Frequency(MHz) at Pout=100W, 50% Duty Cycle	10
Figure 8. Gain(dB), Eff(%) vs Frequency(MHz) at Pout=100W	11
Figure 9. IR Scan at Pout=10W , Frequency=430MHz	12
Figure 10. Board Photographs	13
Figure 11.PCB Layout Board #AR192143	

4 List of Tables

Table 1. Report revisions	2	
Table 2. BOM	15	
Table 3. Board Specifications	16	
Table 4 Device Specifications	16	

5 General Description

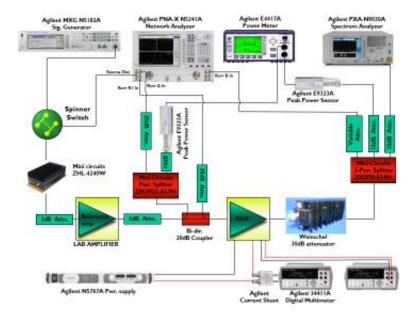
This report presents the measurement results of the Class AB Demo board AR192143 using the BLP15H9S100. This demo is characterized over 360-450MHz. Customer requirement was 380-430MHz.

AMPLEON AR192143

BLP15H9S100 360-450 MHz

6 Biasing

6.1 Bias Details


The efficiencies presented include the bias current from the biasing board. The current from the biasing board is \sim 25mA.

VDD =50

VGS= ~2.3 V, leading to an IDQ =300mA.

7 Test Bench Set Up

Figure 1.Test Bench Equipment set up

4 of 17

AR192143

BLP15H9S100 360-450 MHz

8 Summary

The demo achieves ~100W across 360-450MHz under CW conditions. Compression is ~0.5-1dB at Pout=100W.

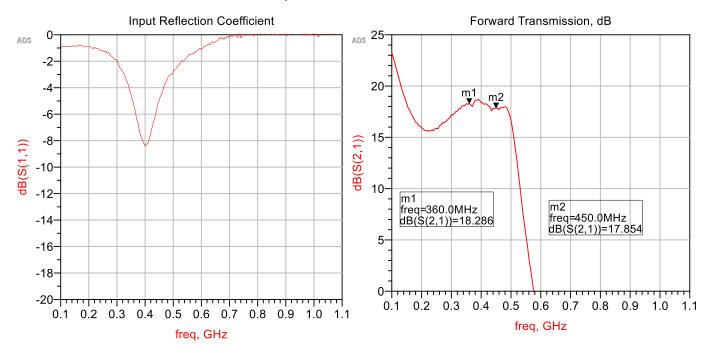
Gain is 17-18dB and Efficiency is 50-60% at Pout=100W

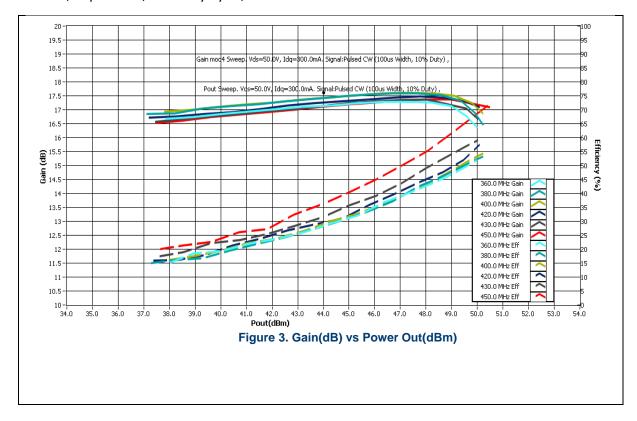
IR Scans show all components < 90°C at Pout =100W CW.

9 Performance Details

9.1 Small Signal Results

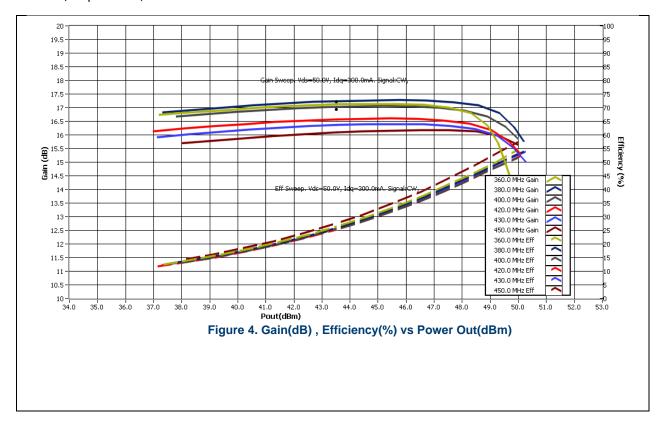
Vdd=50V, Idq=500mA



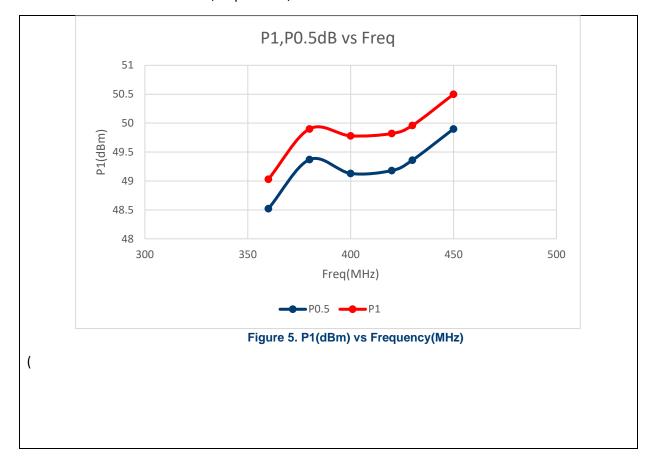

Figure 2. Small SIgnal Data, Vdd=50V, Idq=500mA, Pin=10dBm

AR192143

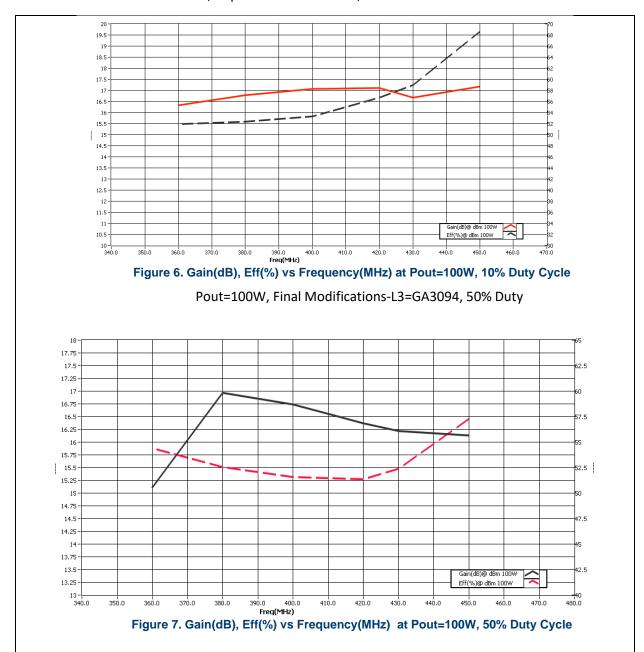
BLP15H9S100 360-450 MHz


9.2 Pulse Gain and Efficiency Sweeps

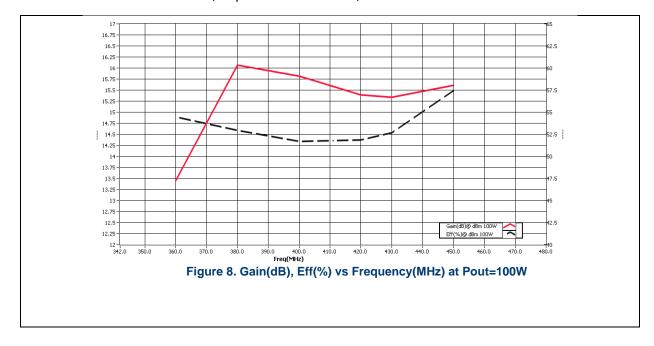
Vdd=50V, Idq=300mA, 10% Duty Cycle, 100usec PW


9.3 CW Gain and Efficiency Sweeps

Vdd=50V, Idq=300mA,


9.4 P1dB

Vdd=50V, Idq=300mA, CW


9.5 Gain, Efficiency vs Frequency at Fixed Power Output

Vdd=50V, Idq=300mA Pout=100W,L3=A04T

9.6 Gain, Efficiency vs Frequency at Fixed Power Output

Vdd=50V, Idq=300mA Final Mods, CW Pout=100W

AR192143

10 IR Scans

10.1 IR Scan Results

Vdd=50V, Idq=300mA, Frequency=430MHz, Pout=100W

Board 192143_Mod6. Pout=100W, CW, I=3.8,freq=430MHz

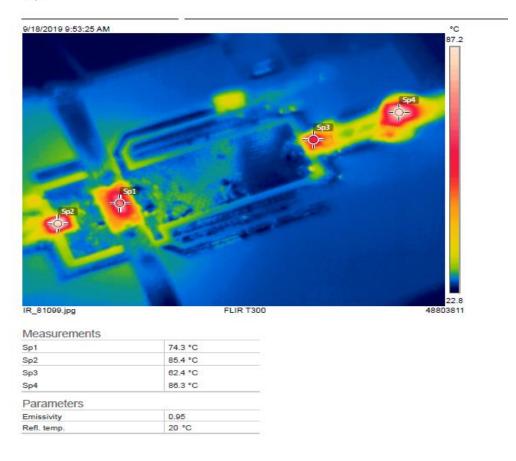


Figure 9. IR Scan at Pout=10W, Frequency=430MHz

The 2nd Matching Coil L3 is the hottest component on the board.

Temperature of this Coil range from 80-92°C over the 360-450MHz range

11 Hardware

11.1 Board photograph

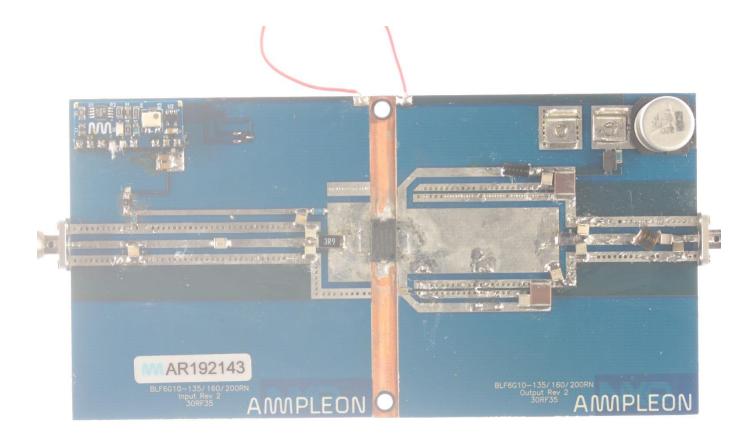


Figure 10. Board Photographs

11.2 PCB layout

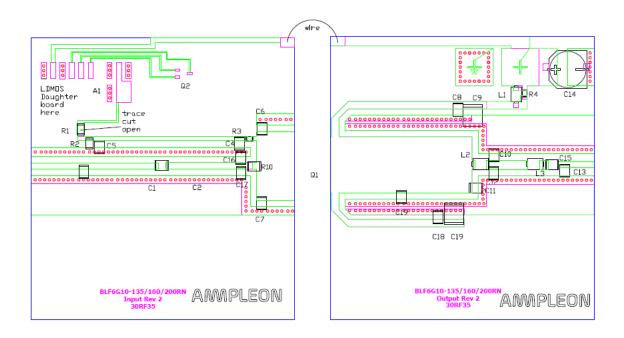


Figure 11.PCB Layout Board #AR192143

11.3 Bill of materials

Table 2. BOM

Component	Description	Value	Remarks
PCB Input	Taconic RF35-TC		Er = 3.5, 30 mils thick, 1oz
			BLF6G10-135/160/200RN Input Rev2
PCB Output	Taconic RF35-TC		Er = 3.5, 30 mils thick, 1oz
			BLF6G10-135/160/200RN Output Rev2
Q1	Transistor,100W 1000MHz L	.DMOS	BLP15H9S100
Q2	Transistor, NPN 45V 100mA	GP	NXP BC847
C1,C5,C8, C15,C18	Capacitor	100pF	ATC800B orPassive Plus 1111N series
C2	Capacitor	15pF	ATC800B orPassive Plus 1111N series
C3	Capacitor	130pF	ATC800B orPassive Plus 1111N series
C4	Capacitor	100pF	ATC800B orPassive Plus 1111N series
C6, C7	Capacitor	DNP	ATC800B orPassive Plus 1111N series
C9	Capacitor, 100V 10% X7S, 22	10uF	TDK C5750X7S2A106M
C12	Capacitor	12pF	ATC800B orPassive Plus 1111N series
C11	Capacitor	5.6pF	ATC800B or Passive Plus 1111N series
C13	Capacitor	10pF	ATC800B or Passive Plus 1111N series
C14	Capacitor, 63V 20%, alum el	220uF	Panasonic EEV-FK1J221Q
C16	Capacitor	27pF	ATC800B or Passive Plus 1111N series
C10,C17	Capacitor	12pF	ATC800B or Passive Plus 1111N series
L1	Ferrite Bead		Fair Rite, 2743019447
L2	Inductor 8nH	8nH	Coilcraft A03
L3	Inductor 12nH	12nH	Coilcraft GA3094
R1	Resistor, 0805 size	11K Ohms	Generic
R2	Resistor, 0805 size	20K Ohms	Generic
R3	Resistor, 1210 size	91 Ohms	Generic
R4	Resistor, 1206 size	10 Ohms	Generic
R10	Resistor, 2010 size	3.9 Ohms	Generic

Application Report

11.4 PCB materials

Table 3. Board Specifications

Parameter	Value
Manufacturer	Taconic
Туре	RF35
Thickness	30 mils, 1oz. copper
Layers	2, top/bottom. Bottom all copper

11.5 Device markings

Table 4. Device Specifications

Parameter	Value	
Manufacturer	Ampleon	
Device	BLP15H9S100	
Date Code	M1919	

AMPLEON AR192143

BLP15H9S100 360-450 MHz

12 Legal Information

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accept no liability for inclusion and/or use of Ampleon products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of the NXP group of companies and any reference to or use of the 'NXP' trademarks will be replaced by reference to or use of Ampleon's own trademarks.

12.1 Contact information

For more information, please visit: http://www.ampleon.com

For sales office addresses, please visit: http://www.ampleon.com/sales

AR192143

All information provided in this document is subject to legal disclaimers.

© Ampleon Netherlands B.V. 2016. All rights reserved.